Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 186: 114322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729712

ABSTRACT

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Subject(s)
Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
2.
Curr Dev Nutr ; 8(4): 102142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38655128

ABSTRACT

Background: The administration of probiotics has been shown to be beneficial in asthma. The administration of Saccharomyces cerevisiae UFMG A-905 prevented asthma development. Traditionally, probiotics are administered using dairy-based matrices, but other vehicles (e.g., fruit juices, biscuits, candies, and breads) can be used. Objectives: This study aimed to assess the effect of bread fermented with S. cerevisiae UFMG A-905 in asthma prevention. Methods: Three breads were produced: fermented with commercial yeast, fermented with S. cerevisiae UFMG A-905, and fermented with S. cerevisiae UFMG A-905 with the addition of alginate microcapsules containing live S. cerevisiae UFMG A-905. Characterization of the microbial composition of the breads was performed. Male Balb/c mice were sensitized and challenged with ovalbumin. Breads were administered 10 d before the first sensitization and during sensitization and challenge protocol. Yeast fecal count, in vivo airway hyperresponsiveness, and airway and lung inflammation were assessed. Results: In UFMG A-905 bread, there was an increase in yeast number and a decrease in total and lactic acid bacteria. Animals that received S. cerevisiae UFMG A-905 fermented bread with microcapsules had a significant increase in yeast recovery from feces. S. cerevisiae UFMG A-905-fermented breads partially reduced airway inflammation, decreasing eosinophils and IL5 and IL13 concentrations. When adding microcapsules, the bread also diminished airway hyperresponsiveness and increased IL17A concentrations. Conclusions: S. cerevisiae UFMG A-905 was able to generate long-fermentation breads. Microcapsules were a safe and viable way to inoculate the live yeast into food. The administration of breads fermented with S. cerevisiae UFMG A-905 prevented asthma-like characteristics, being more pronounced when the breads contained microcapsules with live yeast.

3.
World J Microbiol Biotechnol ; 39(9): 235, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37365380

ABSTRACT

Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.


Subject(s)
Antineoplastic Agents , Lactobacillus delbrueckii , Mucositis , Probiotics , Synbiotics , Mice , Animals , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Probiotics/pharmacology , Intestinal Mucosa , Prebiotics/adverse effects , Fluorouracil/adverse effects , Antineoplastic Agents/pharmacology
5.
Front Microbiol ; 13: 858036, 2022.
Article in English | MEDLINE | ID: mdl-35558121

ABSTRACT

Intestinal mucositis promoted by the use of anticancer drugs is characterized by ulcerative inflammation of the intestinal mucosa, a debilitating side effect in cancer patients undergoing treatment. Probiotics are a potential therapeutic option to alleviate intestinal mucositis due to their effects on epithelial barrier integrity and anti-inflammatory modulation. This study investigated the health-promoting impact of Lactobacillus delbrueckii CIDCA 133 in modulating inflammatory and epithelial barrier markers to protect the intestinal mucosa from 5-fluorouracil-induced epithelial damage. L. delbrueckii CIDCA 133 consumption ameliorated small intestine shortening, inflammatory cell infiltration, intestinal permeability, villus atrophy, and goblet cell count, improving the intestinal mucosa architecture and its function in treated mice. Upregulation of Muc2, Cldn1, Hp, F11r, and Il10, and downregulation of markers involved in NF-κB signaling pathway activation (Tlr2, Tlr4, Nfkb1, Il6, and Il1b) were observed at the mRNA level. This work suggests a beneficial role of L. delbrueckii strain CIDCA 133 on intestinal damage induced by 5-FU chemotherapy through modulation of inflammatory pathways and improvement of epithelial barrier function.

6.
Probiotics Antimicrob Proteins ; 13(3): 709-719, 2021 06.
Article in English | MEDLINE | ID: mdl-33433898

ABSTRACT

Skin wounds are an important clinical problem which affects millions of people worldwide. The search for new therapeutic approaches to improve wound healing is needed. The present study aimed to evaluate the effects of the oral treatment with the skin-related probiotics Lactobacillus johnsonii LA1 (LJ), L. paracasei ST11 (LP), and L. rhamnosus LPR (LR) in a model of excisional skin wounds in Swiss mice. The animals received daily oral gavage of PBS or 1 × 107 colony-forming units of LJ, LP, or LR, singly, beginning just after the creation of wounds until euthanasia. Blood flow was evaluated by laser Doppler perfusion imaging. Myeloperoxidase and N-acetyl-ß-D-glucosaminidase activities were used to assess the accumulation of neutrophils and macrophages, respectively. The wound tissue was also collected for histological analyses (H&E, Toluidine blue, and Picrosirius red staining). The macroscopic wound closure rate was faster only in mice treated with LR, but not with LJ and LP, when compared to mice treated with PBS. Histological evaluations showed that treatment with LR stimulated wound epithelization when compared to PBS. Further analyses showed that wounds from LR-treated mice presented a significant decrease in macrophage (p < 0.001) and mast cell (p < 0.001) infiltration, along with improved angiogenesis (p < 0.001) and blood flow (p < 0.01). Of note, collagen deposition and scarring were reduced in LR-treated mice when compared to PBS-treated mice. In conclusion, our results show that the oral treatment with Lactobacillus rhamnosus accelerates skin wound closure and reduces scar, besides to reducing inflammation and fibrogenesis and improving angiogenesis in the wounded skin.


Subject(s)
Cicatrix , Lacticaseibacillus rhamnosus , Probiotics/therapeutic use , Skin/injuries , Wound Healing , Animals , Cicatrix/prevention & control , Mice
7.
Nutrients ; 11(10)2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31581750

ABSTRACT

Benefits to the host metabolism resulting from Saccharomyces boulardii (Sb) supplementation have been described; however, no study has investigated the effects of this supplementation on aerobic metabolism and performance during physical exercise. Thus, in the present study, we addressed the effects of Sb supplementation on the rate of oxygen consumption (VO2), mechanical efficiency (external work divided by VO2), and aerobic performance of rats subjected to fatiguing, incremental-speed exercise. Twenty-six male Wistar rats were randomly divided into two groups: (1) non-supplemented, in which rats received 0.1 mL of a saline solution, and (2) Sb-supplemented, in which rats received 0.1 mL of a suspension containing 8.0 log10 colony-forming units. The rats received the treatments by gavage for 10 consecutive days; they were then subjected to fatiguing treadmill running. Sb supplementation did not change the VO2 values or mechanical efficiency during submaximal exercise intensities. In contrast, at fatigue, VO2MAX was increased by 12.7% in supplemented rats compared with controls (p = 0.01). Moreover, Sb improved aerobic performance, as evidenced by a 12.4% increase in maximal running speed attained by the supplemented rats (p < 0.05). We conclude that Sb supplementation for 10 days increases VO2MAX and aerobic performance in rats.


Subject(s)
Energy Metabolism , Exercise Tolerance , Muscle Contraction , Muscle, Skeletal/metabolism , Oxygen Consumption , Probiotics/administration & dosage , Saccharomyces boulardii/growth & development , Animal Feed , Animals , Male , Muscle Fatigue , Muscle Strength , Rats, Wistar , Running , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...